A corneal ulcer is defined as loss of surface corneal epithelium along with infiltration into the surrounding and underlying layers. It may be infectious or non infectious. Non infectious causes of corneal ulcer include mechanical trauma, chronic irritation, contact lens induced or nutritional deficiency. The infectious causes include bacteria, fungi, viruses and protozoa. Recalcitrant corneal ulcer refers to a corneal ulcer which does not respond to the conventional treatment (Figure1). Response of a corneal ulcer to treatment is indicated by decrease in size of the epithelial defect or infiltrates. The time frame for resolution differs for various etiologies of a corneal ulcer. In case of a bacterial or viral corneal ulcer, a recalcitrant corneal ulcer is defined as an ulcer showing no signs of improvement in terms of reduction in size of epithelial defect or infiltrates even after 48 hours of initiation of the specific anti microbial treatment. In case of a fungal corneal ulcer, this time period is extended up to 5-6 days.

Epidemiology:
As per WHO, Corneal blindness is one of the leading causes of blindness worldwide. This proportion is higher in tropical developing nations such as India. Most cases of corneal blindness are due to corneal ulcers or keratitis. Microbial keratitis is hence a leading cause of ocular morbidity. Timely diagnosis and treatment may reduce the morbidity and extent of visual impairment in these conditions. But sometimes despite the best diagnostic techniques, some cases of microbial keratitis do not respond to the conventional treatment. Most of these cases are seen to be associated with drug resistant micro organisms which make the treatment even more difficult. Rampant use of over the counter topical antibiotics has a role to play in the development of multi drug resistant micro organisms which has further increased the incidence of recalcitrant microbial keratitis.

Causes of recalcitrant keratitis:
A non resolving corneal ulcer is an ophthalmologist’s nightmare. A systematic approach is hence required to rule out all the possible causes of a recalcitrant ulcer.

First and foremost, the nature of treatment already administered needs to be evaluated. Incomplete treatment is one of the leading causes of a corneal ulcer to be labeled as non resolving. Before labeling the ulcer as non resolving, an accurate diagnostic corneal scraping and culture sensitivity along with alteration of the treatment if required should have been done. Hence most of these cases are incorrect diagnoses in the setting of incomplete investigations or treatment.

Most of the fortified anti microbial therapy that is initiated in these cases is epitheliotoxic and may in few cases itself impede re epithelialisation of healthy corneal epithelium.
Even in the best possible situation with accurate and timely corneal scraping and microbiological examination along with timely initiation of anti microbial treatment, some ulcers do not show any improvement. With increasing incidence of drug resistant microorganisms, such ulcers are on the rise. Microorganisms develop resistance to the anti microbial treatment by genetic mutation and inductive expression of latent chromosomal genes with exchange of genetic material via transformation, bacteriophage transduction or plasmid conjugation. In certain cases, the size and extent of the ulcer is already large reaching upto the limbus with impending perforation at the time of presentation to the ophthalmologist. In such cases, standard anti microbial treatment may not work. They may require surgical intervention. Atypical microorganisms may also cause corneal ulcers not responding to the routine treatment.

Adnexal abnormalities such as eye lid malposition may also affect the healing process of a corneal ulcer. Co existing Thyroid eye disease with axial proptosis and lagophthalmos may impair the normal healing process of the ulcer despite suitable antimicrobial treatment.

Patients with systemic diseases such as Diabetes mellitus are known to have delayed healing and may develop a recalcitrant corneal ulcer. Other immune compromised conditions such as HIV-AIDS, patients on immune suppressive treatment, anti cancer drugs etc are also prone to develop recalcitrant corneal ulcers.

Non infective recalcitrant corneal ulcers may be associated with mechanical trauma to the cornea in the form of papillae or follicles in upper lid palpebral conjunctiva as seen in trachoma.

The possible causes of a recalcitrant corneal ulcer are summarized in Table 1.

Clinical Presentation:

A case of a non healing or recalcitrant ulcer usually presents with an acute red eye with complaints of redness, pain, photophobia and vision loss. There may be a history of trauma with vegetative material or a febrile viral illness. Such history may be a pointer towards the probable etiology of the ulcer and may guide the treatment.

A. History and Symptoms:

The presence of pain is due to the irritation to the sensory nerve fibres present in the superficial layers of the cornea. The nature of pain is also an indicator of the probable cause. Bacterial keratitis is usually characterized by significant pain. Fungal keratitis is usually not associated with severe pain. Acanthamoeba keratitis is characterized by severe pain owing to radial keratoneuritis. This pain is usually out of proportion to the size and extent of the ulcer. Herpetic dendritic ulcers are usually associated with minimal pain. In cases of recalcitrant corneal ulcers, a mixed picture may be present thereby complicating the diagnosis based on history. A sudden relief in pain in such cases may indicate a perforated corneal ulcer. Bacterial keratitis usually has a sudden onset with rapid progression whereas fungal and acanthamoeba keratitis typically have a chronic course.

B. Predisposing Factors:

For timely initiation of empirical anti microbial treatment before the microbiological evidence becomes available, it is important to look for the specific predisposing factors which would point towards a specific etiology. Corneal trauma by a vegetative matter usually leads to mycotic ulcer. Prolonged contact lens wear especially overnight or extended wear soft contact lenses may cause corneal ulcers especially due to infection by the Pseudomonas species. Exposure to dirty swimming pool water or pond
water and contaminated contact lens solutions has been seen to be associated with Acanthamoeba keratitis. Atypical causes such as Pneumococcus are seen to be associated with co existing dacryocystitis.

In case of recalcitrant corneal ulcer, the medications that the patient has been prescribed earlier for the ulcer need evaluation. Topical corticosteroids may worsen a case of probable mycotic keratitis rapidly⁹. The use of non steroidal anti inflammatory agents has been associated with worsening of corneal ulcers and in rare cases may cause corneal melt as well¹⁰.

History of previous ocular surgery including cataract and refractive surgery is important. Post LASIK corneal ulcers may be due to atypical mycobacteria¹¹.

C. Ocular Examination:

- Visual Acuity
 A central or large corneal ulcer may significantly impair the visual acuity of the patient. In advanced severe ulcers with posterior segment involvement, there may be an inaccurate projection of rays (PR) as well.

- Adnexa
 It is important to rule out eyelid malpositions, lagophthalmos, proposis, blepharitis, dacryocystitis which may impede the healing process of the corneal ulcer. Lid or lacrimal system abnormalities need to be addressed along with the ulcer.

- Conjunctiva
 Gonococcal, Pneumococcal and Haemophilus corneal ulcers are rare but are characterized by severe conjunctival injection. A greenish purulent discharge may indicate that Pseudomonas keratitis is the likely cause.

- Cornea
 In order to diagnose a case of recalcitrant keratitis, sequential corneal examinations need to be done for location, size and depth of the corneal ulcer. A schematic diagram should be drawn at each visit.

 o Location:
 The ulcer may be central, paracentral or peripheral. Isolated peripheral ulcers are seen with Herpes simplex virus and Mycobacterial tuberculosis. There may be multiple islands of ulcer. Each ulcer needs to be schematically drawn for the sake of future record to look for any response to treatment.

 o Shape:
 Dry looking ulcers with feathery margins and stellate lesions are usually mycotic. Dendritic ulcers are characteristic of Herpes simplex keratitis. Ring ulcer is indicative of Acanthamoeba keratitis. Bacterial ulcers are usually wet looking with punched out appearance.

 o Margins of the ulcer:
 In case of peripheral ulcerative keratitis, overhanging edges are characteristically present in case of Moorens ulcer.

 o Size:
 The most important indicator of response to treatment in case of a corneal ulcer is the size of both the epithelial defect and the surrounding infiltrates. Using the slit lamp biomicroscope with in-built micrometer, an accurate determination of the size of ulcer in all dimensions is possible.

 An accurate measurement of the size of the corneal ulcer needs to be done and recorded.

 The epithelial defect is measured after staining it with Flourescein stain or Rose Bengal stain. Rose Bengal stain is specific particularly for viral herpetic dendritic keratitis.

 The size, density and depth of infiltration should be recorded in detail and used as reference in follow up to evaluate response of the corneal ulcer to treatment.

 o Corneal sensations:
 Corneal sensations can be checked with the help of cotton wisp or with Cochet-Bonnet aesthesiometer. They are particularly decreased in case of viral keratitis.

 o Anterior Chamber
 A hypopyon may be associated with any corneal ulcer. Myotic keratitis is usually associated with a fixed hypopyon that does not change position despite making the patient lie supine for at least 10 minutes.

 o Posterior Segment
 Posterior segment needs to be assessed for the presence of any retained intraocular foreign body or co existing endophthalmitis which may be the predisposing factors for recalcitrant keratitis.

Documentation:
Documentation of location, size, shape, vascularisation of a corneal ulcer is very important. It becomes even more
important in case of a recalcitrant corneal ulcer. It can be done either by colour clinical photographs or by schematic diagram.

- **Clinical Photography (CP)**

 CP of the index eye needs to be taken at regular intervals. Both diffuse and slit sections need to be recorded. Measurements should be done using in built micrometer.

- **Schematic Diagram**

 In many ways, the age old schematic corneal drawings are superior to clinical photography. A lot of details which may not get highlighted can be duly pointed out effectively using a well drawn corneal diagram. But the limitation is time, effort and skill. A schematic diagram carries significance only when it abides by the standard colour coding. This becomes even more important when more than ophthalmologist examines the patient.

 Black colour is meant for limbus, scars, foreign bodies, deposits, guttae, sutures, tissue adhesive and lipid keratopathy. Blue colour denotes edema and bullae. Stromal edema is depicted by shading while epithelial edema is drawn using small circles. Wavy blue lines denote the Descemet’s membrane folds. Brown colour is for pupil, iris and melanin or iron pigmentation. Red colour is used to depict vascularisation. Straight red lines indicate stromal vessels while wavy lines are for sub epithelial vessels. Dotted lines depict ghost vessels. Superficial vascularisation begins outside the corneal circle whereas deep vessels begin at the margin of the circle. Orange colour is used to indicate collection of white blood cells such as stromal infiltrates, Keratitic precipitates and hypopyon. Green colour denotes flourescein staining of the epithelial defect or dendrites. The colour coding of the cornea is summarized in Table 2.

Investigations:

Both ocular and systemic investigations hold importance in case of a recalcitrant keratitis. Systemic investigations to rule out conditions associated with delayed healing should be done at the earliest. This includes a battery of investigations including fasting and post prandial blood sugar, complete hemogram, urine analysis, renal function test and liver function test. In suspected cases, further immunological work up including HIV ELISA, ESR, ANA, ANCA, RF may be required.

Among the ocular investigations, measurement of IOP and ultrasonography are done to rule out secondary glaucoma and evaluate the posterior segment respectively. The primary ocular investigation that holds special diagnostic importance is Corneal Scraping. In a case of recalcitrant keratitis, the previous treatment needs to be withdrawn at least for 24-48 hours and fresh corneal scraping taken using standard techniques.

If there is any conjunctival discharge or lacrimal sac discharge or bandage contact lens, they should be separately sent for microbiological testing.

Corneal scraping is ideally done under topical anaesthesia using 0.5 percent paracaine drops. It is routinely done on a slit lamp biomicroscope. In case of small children and uncooperative patients, a general anaesthesia may be needed and scraping is then done under operating microscope. A corneal scraping sample is ideally obtained using Kimura’s spatula. Other instruments that may be used for this purpose include Bard Parker blade number 57, surgical blade number 15 and 26 gauge needle. It is important to be cautious and not cause any perforation while scraping especially with a needle. Before corneal scraping, all the debris and drug deposits need to be swabbed away first. Then the sample is taken from the leading edges and base of the ulcer. It is important to brush the instrument in a single direction. In ideal circumstances with good and timely microbiology assistance at hand, the scraping sample should be plated onto the culture plate of choice straight away. This ‘eye to the plate’ technique increases the productivity of corneal scraping and decreases the chance of sample drying off or inadequate sample. Along with culture, other microbiological investigations that need to be done include Gram staining, Giemsa staining, Ziehl Nelson staining, KOH wet mount. Other stains and culture may be done in cases with strong

Table 2. Schematic colour coding of cornea

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Scar, degeneration, deposits, foreign body, tissue adhesive, limbus, lipid keratopathy</td>
</tr>
<tr>
<td>Blue</td>
<td>Edema, bullae, Descemet folds</td>
</tr>
<tr>
<td>Brown</td>
<td>Iris, iron or melanin pigmentation</td>
</tr>
<tr>
<td>Orange</td>
<td>Keratitic precipitates, hypopyon, stromal infiltrates</td>
</tr>
<tr>
<td>Green</td>
<td>Flourescein stained epithelial defect, dendrites, vitreous</td>
</tr>
<tr>
<td>Red</td>
<td>Vascularisation, hemorrhage</td>
</tr>
</tbody>
</table>
APPROACH TO CASE OF RECALCITRANT CORNEAL ULCER

A CASE OF CORNEAL ULCER ON TREATMENT FOR AT LEAST 24-48 HOURS FOR SUSPECTED BACTERIAL ULCER AND AT LEAST 5-7 DAYS FOR FUNGAL ULCER WITH NO SIGNS OF IMPROVEMENT

NON RESOLVING CORNEAL ULCER

NON INFECTIVE ULCER
- No infiltrates
- No discharge
- Negative microbiological evidence
- Punch ed out lesion
- Neurotrophic
- Shields ulcer in VKC

INFECTIVE CORNEAL ULCER

RECALCITRANT INFECTIVE CORNEAL ULCER

HISTORY
- Rule out trauma, vegetative matter exposure, recurrence, pool or pond water exposure, contact lens use
- History of pain redness diminution of vision photophobia
- Characteristic of pain
- Symptomatic improvement if any
- Detailed Treatment history

EXAMINATION
- Specific clinical signs to be looked for
- Feathery margins/ satellite lesions/ dry ulcer/ endothelial plaque, signs>symptoms/ fixed hypopyon: may have fungal etiology
- Wet looking ulcer with symptomatic patient may be bacterial
- Dendrites/descemet folds/ KPs/ associated uveitis/ history of recurrence may be viral
- Ring ulcer/extremely painful may be alcamoeba keratitis
suspicion of atypical organisms.

It is important to have an adequate sample and accurate staining and fixing skills to be able to diagnose the causative micro organism and start anti microbial therapy accordingly. This step is the usual limiting factor in cases labeled as recalcitrant keratitis. Hence it is advisable to stop all treatment in such cases for 24-48 hours and repeat the scraping process accurately.

The routine smears and stains have their own limitations. Gram stain is able to identify the causative organism in 75 percent cases while 10 percent KOH wet mount has a sensitivity of 92% and specificity of 96%12-14. Other stains that can be used in suspected cases include Calcoflour white for Acanthamoeba and Ziehl nelson for mycobacteria and nocardia.

Corneal scraping is inoculated onto culture plate in order to culture the micro organism. These plates are temperature sensitive. Hence an accurate diagnosis requires good microbiological laboratory assistance and facilities. Commonly used culture media include Blood agar plate, Chocolate agar plate and Sabouraud’s dextrose agar. Other culture media that can be used if a particular organism is suspected include Thioglycollate broth for anaerobes, Lowenstein Jensen medium for mycobacteria, Brain heart infusion for fungi and E.coli enriched non nutrient agar for Acanthamoeba.

A negative culture report may indicate partial antibiotic treatment, inadequate sample, inaccurate culture techniques etc. Such cases go on to become recalcitrant due to lack of directed anti microbial therapy15.

Once the organism has grown on the culture plate, an antibiotic sensitivity testing is done and accordingly the treatment may be altered or started in these cases.

Other investigations such as Confocal microscopy and serological testing including PCR may also aid in the diagnosis.

For small peripheral bacterial corneal ulcers, monotherapy with a topical flouroquinolone may be sufficient. With the advent of flouroquinolone resistant micro organisms especially Moxifloxacin resistant Staphylococcus aureus, topical vancomycin 5 percent has found favour in such patients. For larger ulcers, fortified therapy may be needed according to culture sensitivity. Most bacteria are sensitive to the empiric therapy of cefazolin-tobramycin itself and it usually continues then. The therapy in the initial period is intensive with hourly application.
For suspected filamentous fungal infections, 5 percent natamycin is the initial treatment of choice. Topical voriconazole 1 percent may be used in adjunct to topical natamycin for filamentary fungal keratitis and has been shown to be effective in the MUTTON trial. Topical 0.15 percent amphotericin B may be used in case of suspected yeast infection. Oral antifungals may be given in case of large ulcers with sclera involvement or associated endophthalmitis or with impending perforation.

Cysticidal therapy includes biguanides such as PHMB 0.02% and propamidine 0.1% or brolene. Other agents include chlorhexidine 0.02% may be used in place of PHMB. Topical steroids may be added in case of progressive vascularisation in such cases.

The treatment in case of a viral keratitis depends on the type of keratitis. In case of a purely epithelial dendritic keratitis, antivirals alone are the treatment of choice and steroids should be avoided. A topical steroid in adjunction with oral antivirals is the treatment of choice for stromal keratitis and endothelitis. The balance between topical steroids and antivirals is needed in case of stromal or endothelial keratitis along with epithelial involvement.

Non resolving corneal ulcer which fails to respond to the above standard protocols is a therapeutic challenge and an ophthalmologist’s dilemma. Several newer treatment regimens have been tried especially for non responding corneal ulcers.

Several studies have evaluated the role of collagen cross linking in a case of non healing corneal ulcer. Some of these studies were in vitro and showed the beneficial bactericidal effect of 365 nm UVA photo activated riboflavin. Tsugita et al showed that UVA-riboflavin combination deactivates RNA in tobacco mosaic virus. Collagen crosslinking using 365 nm UVA and riboflavin solution has been shown to have a role in preventing corneal melt caused by Gram-negative bacteria (92%) followed by Gram-positive bacteria (84%), acanthamoeba (71%) and fungi (61%). Shetty R et al reported that CXL is an effective procedure in treating non-resolving microbial keratitis with superficial stromal involvement. They further revealed that the prognosis was better in case of bacterial keratitis as compared to fungal keratitis which was deeper. Hence CXL may be used as an adjunct to the standard therapy. CXL in these cases also gives early symptomatic relief to the patients by decreasing corneal sensations and hence reducing the pain.

Targeted drug delivery using intrastromal injection of the anti fungal agent especially voriconazole has been shown to be effective in cases of fungal keratitis. Intrastromal voriconazole in the dose of 50 µg/0.1 ml is administered using 1 ml tuberculin syringe and 26 gauge needle. It is inserted obliquely into the cornea from uninvolved area

![Figure 2a. Clinical photograph in a case of non resolving fungal keratitis (baseline)](image)

![Figure 2b. Clinical photograph demonstrating the effect of topical natamycin 5% along with 1% intrastromal Voriconazole in a case of non resolving fungal keratitis at week 1)](image)
and a barrage is made all around the involved or ulcerated area. These injections may be repeated 72 hours later. In a study published in 2011, Sharma N et al injected intrastromal voriconazole in 12 eyes with recalcitrant fungal keratitis. Of these, 10 eyes healed with scar formation (Figure 2 a,b,c) while two eyes required therapeutic penetrating keratoplasty. In another study by Sharma N et al, forty cases of fungal corneal ulcer not responding to standard topical natamycin 5 percent drops for 2 weeks were randomised into treatment with either hourly topical voriconazole or at least three intrastromal voriconazole injections. There was no statistical difference in mean duration to healing. The incidence of perforation and posterior synechiae were similar while pain was significantly more frequent in the intrastromal group.

Previous studies have shown that the experimental use of intracameral voriconazole in humans shows no toxic effects when the aqueous concentration is in the safe range of $10 \text{g/mL - 1.5mg/mL}$. There may be a reduction in corneal endothelial cells, trabecular meshwork cells, and retinal pigment epithelial cells in dose more than 1.5mg/ml. In the safe range, intracameral voriconzole can be used in adjunct with intrastromal voriconazole in recalcitrant cases with hypopyon. (Figure 3a and 3b)

Pallikaris et al in 2015 published a report where they successfully used Femtosecond laser to create a corneal pocket for direct instillation of antifungal drug deeper into the cornea.

Natamatrix, a tiny dissolvable matrix which can be inserted into stroma is another novel technique being described for targeted drug delivery.

Several studies have shown that Therapeutic PK has a role in the management of severe and refractory keratitis with a high success in restoring anatomical integrity. But on the other hand graft re infection rates are high especially in case of fungal and acanthamoeba keratitis.
Conclusion:

Recalcitrant microbial keratitis is a challenge to every ophthalmologist. Its management involves a step by step approach. Timely diagnosis and intervention may save the ulcer from perforation. Newer modalities such as Collagen cross linking, intrastromal and intracameral drug injections and other methods of targeted drug delivery may be tried.

References:

